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From rings. . .

What do these algebraic objects have in common?

They are rings that admit fields of fractions.

Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Q =

{
a

b

∣∣∣∣ a ∈ Z, b ∈ Z \ {0}
}

Z[x ] = {anxn + · · ·+ a1x + a0 | ai ∈ Z}

Q(x) =

{
p(x)

q(x)

∣∣∣∣ p(x) = anx
n + · · ·+ a1x + a0

q(x) = bmxm + · · ·+ b1x + b0
, ai , bj ∈ Z, q 6= 0

}

O(C) = {holomorphic functions on C}

M(C) = {meromorphic functions on C}

Question: What about non-commutative rings?
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Group rings

Definition

For a ring R and a group G , the group ring R[G ] is

{λ1g1 + · · ·+ λngn | λi ∈ R, gi ∈ G}
with addition and multiplication extended R-linearly from G .

In the following, we consider Z[G ] or K [G ] for a subfield K of C.

If G is finite, K [G ] is well understood (representation theory).

If G is infinite, not much is known in general.

Malcev problem

If G is a torsion-free group, does KG embed into a division ring?



Equivariant

Betti numbers

G : discrete, usually infinite group

X :

G -

CW-complex of finite type

Definition

The n-th Betti number of X is

bn(X ) := dimQHn(X ) ∈ N
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Equivariant Betti numbers

G : discrete, usually infinite group

X : G -CW-complex of finite type

Definition

The n-th equivariant Betti number of X is

dim?Hn(?⊗Z[G ] C∗(X ))

Most classical candidates either only depend on G\X or can be
infinite:

dimQQ⊗Z[G ] Hn(X ), dimQHn(Q⊗Z[G ] C∗(X )),

bn(G\X ), bn(G\(X × EG )), . . .

Need:
Well-behaved ring with a map from Z[G ] and a dimension function



The L2-machine

Ingredient #1:

Z[G ] RZ[G ] ∗-regular

N (G ) U(G )

RK [G ] can be constructed
analogously.

Ingredient #2:

dimRZ[G ]

takes values in [0,∞]

finite for finitely generated
modules

additive

Definition

The n-th L2-Betti numbers of a G -CW-complex X of finite type is

b
(2)
n (X ;G ) := dimRZ[G ]

Hn(RZ[G ] ⊗Z[G ] C∗(X )) ∈ [0,∞)
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The L2-machine for G = Z

Z[z , z−1] Q(z)

Z[Z] RZ[Z]

N (Z) U(Z)

L∞(S1) L(S1)

∼= ∼=

∼= ∼=

L2-Betti numbers for G = Z

b
(2)
n (X ;Z) = dimQ(z)Hn(Q(z)⊗Z[z,z−1] C∗(X )) ∈ Z



The strong Atiyah conjecture

Strong Atiyah conjecture for G over Q
Let G be a group with

lcm(G ) := lcm{|F | | F 6 G , |F | <∞} <∞.

Then for every G -CW-complex X of finite type

b
(2)
n (X ;G ) ∈ 1

lcm(G )
Z.

The strong Atiyah conjecture is known for

free-by-{elementary amenable group},
residually {torsion-free elementary amenable} groups,

fundamental groups of (most) 3-manifolds,

one-relator groups,

. . .
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Consequences of the strong Atiyah conjecture

Theorem

If G is torsion-free, then it satisfies the strong Atiyah conjecture
over Q if and only if RZ[G ] is a division ring.

Corollary

For torsion-free groups, the strong Atiyah conjecture implies a
positive solution to the Malcev problem: ZG embeds into the
division ring RZ[G ].

Questions:

What if G has torsion?

What can be said about RK [G ] for K ⊆ C?
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Groups with torsion I

Algebraic Atiyah conjecture for G over K (Jaikin-Zapirain)

The composition⊕
F6G ,|F |<∞

K0(K [F ])→ K0(K [G ])→ K0(RK [G ])

is surjective.

Theorem (Knebusch, Linnell, Schick (plus ∗-regular rings))

The algebraic Atiyah conjecture for G over K holds if and only if
RK [G ] is semisimple with an “Atiyah-expected” Artin–Wedderburn
decomposition. In particular, the number of simple summands of
RC[G ] agrees with the number of finite conjugacy classes of finite
order elements of G .



Groups with torsion II

Theorem (Jaikin-Zapirain)

If the strong Atiyah conjecture for a sofic group G holds over Q,
then it holds over all K ⊆ C.

Theorem (M.)

If the algebraic Atiyah conjecture for a sofic group G holds over Q,
then it holds over all K ⊆ C with lcm(G )-th roots of unity.

Theorem (M.)

Let G be a sofic group and K ⊆ C a field of infinite transcendence
degree over Q. Then RK [G ] is unit-regular.
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What makes RZ[G ] special?

If all L2-Betti numbers of a space vanish, one can define:

universal L2-torsion,

twisted L2-Euler characteristics,

and the L2-polytope.

Question: Does this require the analytic nature of RZ[G ]?

Theorem (Kielak, M.)

For any ring homomorphism Z[G ]→ D to a division ring,
analogues of these invariants can be defined that satisfy most∗ of
the known purely algebraic properties of L2-invariants.
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The Friedl–Tillmann polytope

π = 〈x , y | R〉

R := yx4yx−1y−1x2y−1x−2y2xy−1xy−1x−1y−2x−3y2x−1yxy−1x−1

x

y
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The Friedl–Tillmann polytope as a group invariant

Conjecture (Friedl, Tillmann)

The polytope Pπ is an invariant of the group (up to translation).

Theorem (Friedl, Tillmann)

3 if Gπ is residually {torsion-free elementary amenable}.

Theorem (Friedl, Lück)

3 if Gπ is torsion-free and satisfies the strong Atiyah conjecture.

Meanwhile, the strong Atiyah conjecture has been proved for
one-relator groups by López-Álvarez and Jaikin-Zapirain.

Theorem (Kielak, M.)

3 for all two-generator one-relator groups.
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RK [G ] as a (pseudo-)Sylvester domain

Definition

An n × n-matrix M is full if M = PQ implies that P has at least n
columns. It is stably full if M ⊕ Idr is full for all r > 0.

Invertible matrices and non-zero 1× 1-matrices are stably full.

Definition

A ring R is called a (pseudo-)Sylvester domain if it embeds into a
division ring D over which all (stably) full R-matrices become
invertible.

If this is the case, then D is (up to isomorphism over R) the
division ring over which the most R-matrices become invertible,
called the universal division ring of fractions of R.
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RK [G ] as a (pseudo-)Sylvester domain

Theorem (López-Álvarez, M.)

Let K ⊂ C be a field and G a free-by-{infinite cyclic} group G .
Then

stably full K [G ]-matrices are invertible over RK [G ];

full K [G ]-matrices are invertible over RK [G ] if and only if
every stably free K [G ]-module is free.

Examples

Q[Z2] 3 Q[F2 × Z] 3 Q[Z o Z] 7 Q[〈x , y | x3 = y2〉] 7
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